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In this paper we derive necessary optimality conditions for an interpolating spline
function which minimizes the Holladay approximation of the energy functional and
which stays monotone if the given interpolation data are monotone. To this end
optimal control theory for state-restricted optimal control problems is applied. The
necessary conditions yield a complete characterization of the optimal spline. In the
case of two or three interpolation knots, which we call the local case, the optimality
conditions are treated analytically. They reduce to polynomial equations which can
very easily be solved numerically. These results are used for the construction of a
numerical algorithm for the optimal monotone spline in the general (global) case
via Newton's method. Here, the local optimal spline serves as a favourable initial
estimation for the additional grid points of the optimal spline. Some numerical
examples are presented which are constructed by FORTRAN and MATLAB
programs. � 1999 Academic Press

1. INTRODUCTION

In recent years the problem of shape-preserving interpolation and
approximation has become a wide field of interest. For a given grid
I0=[t1 , ..., tn], where

a=t1<t2< } } } <tn=b, (1.1)

and given interpolation values xj , j=1, ..., n, where n>2, one seeks a
function x, which interpolates the given data (tj , xj), which has certain
smoothness properties and which preserves certain properties of the given
values like non-negativity, monotonicity, or convexity. The different
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methods for the construction of such interpolation functions are charac-
terized by different demands with respect to the degree of smoothness and
by local or global constructions, see, for example, Akima [1], Fritsch and
Carlson [8], and Schmidt and Hess [19].

The authors considered in several investigations also some kind of
optimality conditions generalizing the Holladay property of the classical
cubic spline, cf. Hornung [10, 11], Oberle and Opfer [15, 17], Fischer et
al. [7], Dontchev [6], or Andersson and Elfving [2]. We consider in this
paper in continuation of these investigations the problem of optimal
monotone spline interpolation from a local and global point of view.

Problem 1.1. Given the grid (1.1) and numbers xj , j=1, 2, ..., n, we
seek a minimizer x of the Holladay functional

J(x) := 1
2 |

b

a
(x"(t))2 dt (1.2)

subject to the constraints

x(tj)=x j , j=1, ..., n, (1.3)

x$(t)�x$min , (1.4)

where x$min is a given number, and it is assumed that the following property
holds for the given interpolation data:

(xj+1&xj)>x$min } (t j+1&tj), j=1, ..., n&1. (1.5)

If s is the linear spline connecting the given data points, the condition (1.5)
means that s$(t)>x$min for all t # [t1 , tn]"I0 .

In general, it is demanded that x belongs to the Sobolev space W 2
2[a, b]

of all functions with absolutely continuous first derivative and square
integrable second derivative. But not much is lost if the problem is
restricted to functions x # C 2

s[a, b], which are continuously differentiable
and have a piecewise continuous second derivative.

There are some obvious modifications of Problem 1.1 which can be
treated in the same way and which are relevant in a certain context.

Problem 1.2. This is the same as Problem 1.1 with additional boundary
conditions for the first derivative,

x$(a)=b1 , x$(b)=bn , (1.6)

where b1 , bn are given numbers with b1 , bn>x$min .
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Problem 1.3. This is the same as Problem 1.1 or Problem 1.2; however,
the slope is bounded also from above:

x$min�x$(t)�x$max , t # [a, b]. (1.7)

A solution to Problem 1.1 is usually called a natural spline.

2. NECESSARY CONDITIONS DERIVED BY
OPTIMAL CONTROL THEORY

We want to apply the necessary conditions of optimal control theory to
Problem 1.1. Therefore, we consider a general optimal control problem
with an inequality constraint put on the state variables. This control
problem has the following form:

Problem 2.1. Determine a piecewise continuous control variable u(t) # R,
a�t�b, which minimizes the functional

J(u) :=|
b

a
f0( y(t), u(t)) dt (2.1)

subject to the constraints

y$(t)= f ( y(t), u(t)), a�t�b, (a.e.), (2.2)

r( y(t1), y(t2), ..., y(tn))=0, (2.3)

g( y(t))�0. (2.4)

The vector y(t) # Rm denotes the state variables. The functions f0 : Rm+1

� R, f : Rm+1 � Rm, r : Rn } m � Rk, and g: Rm � R are assumed to be suf-
ficiently smooth. Equation (2.2) describes the state equations, Eq. (2.3) the
multipoint-boundary conditions, and Eq. (2.4) the state variable inequality
constraint.

We summarize the necessary conditions due to Jacobson et al. [12] and
Maurer [14]. Let ( y*, u*) denote a solution of the general optimal control
Problem 2.1. It is assumed that the solution structure consists of a finite
number of contact points, boundary subarcs, and free subarcs. Here, a
boundary subarc is an interval I=[{1 , {2], {1<{2 , of maximal length such
that g[t] :=g( y*(t)) vanishes identically on I, {1 is called the entry point,
and {2 the exit point of the boundary subarc I. An interval I=[{1 , {2] is
called a free subarc, if g[t]<0, {1<t<{2 , holds and, finally, a point { is
called a contact point, if it is an isolated zero of g[t]. Entry, exit, or contact
points are summarized as junction points.
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Now, the necessary conditions can be stated as follows. There exist
piecewise continuously differentiable adjoint variables *(t) # Rm, '(t)�0,
and parameters *0�0, l # Rk, :j�0, j=1, ..., n, +({)�0, where { represents
an arbitrary junction point, such that

(*0 , *(t), '(t), l1 , ..., lk , :1 , ..., :n , +({1), +({2), ...)�0 (2.5)

for t # [a, b] and that for the augmented Hamiltonian (Lagrangian)

H( y, u, *, ', *0) :=*0 f0( y, u)+*Tf ( y, u)+'g( y) (2.6)

the following properties hold:

(1) Adjoint differential equations,

*$(t)=&Hy( y(t), u(t), *(t), '(t), *0). (2.7)

(2) Minimum principle,

u*(t)=arg min
u

H( y*(t), u, *(t), '(t), *0). (2.8)

(3) Natural boundary conditions,

*(t1)=&
�

�y(t1)
(l Tr( y(t1), ..., y(tn))+:1g( y(t1))),

*(t+
j )&*(t&

j )=&
�

�y(t j)
(l Tr( y(t1), ..., y(tn))+: jg( y(t j))),

(2.9)

j=2, ..., n&1,

*(tn)=
�

�y(tn)
(l Tr( y(t1), ..., y(tn))+:ng( y(tn))).

(4) Complementarity condition,

'(t) } g[t]=0, a�t�b,
(2.10)

:j } g[tj]=0, j=1, ..., n.

(5) Jump conditions ({ junction point),

*({+)&*({&)=&+({) gy( y({)),
(2.11)

H[{+]&H[{&]=0.
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Here, the abbreviation H[t] :=H( y*(t), u*(t), *(t), '(t), *0) is used.
Note, that, in extension of the general formulation (cf. Opfer and Oberle

[17]), the :j -terms occur in Eqs. (2.9), see Chudej [4]. This is because in
our application the fixed knots tj may be located within a boundary subarc
of the constraint g.

In order to apply the necessary conditions to Problem 1.1, we substitute
y1(t) :=x(t), y2(t) :=x$(t), and u(t) :=x"(t). Then, Problem 1.1 takes the
form of the general optimal control Problem 2.1 with f0 :=u2�2,
f :=( y2 , u)T, rj :=y1(t j)&x j , j=1, ..., n, and g( y) :=x$min& y2 . With these
relations the augmented Hamiltonian takes the form

H= 1
2u2*0+*1y2+*2u+'(x$min& y2). (2.12)

The adjoint differential equations are

*$1(t)=0, *$2(t)='&*1 , (2.13)

and the natural boundary conditions and the jump relations can be written
as

*1(t1)=&l1 , *2(t1)=:1 ,

*1(t+
j )=*1(t&

j )&l j , *2(t+
j )=*2(t&

j )+:j , 2� j�n&1,

*1(tn)=ln , *2(tn)=&:n , (2.14)

*1({+)=*1({&), *2({+)=*2({&)++({),

H[{+]=H[{&].

The degenerate case *0=0 can be excluded by an explicit argument: By the
minimum principle the assumption *0=0 yields *2 #0 on the whole inter-
val [a, b]. Therefore, from Eq. (2.13), it follows that *1 vanishes on free
subarcs.

On the other hand, Eqs. (2.13)�(2.14) show that *1 is a piecewise con-
stant function and jumps of *1 can occur only at the given interpolation
knots. Now, the assumption (1.5) ensures that each interpolation interval
[tj , t j+1] contains some points of a free subarc. Therefore, *1 also vanishes
identically on the whole interval [a, b], and so all adjoint variables
do. Altogether, the degeneration assumption contradicts the necessary
condition (2.5), and, thus, we may assume *0=1 below.

The minimum principle yields u(t)=&*2(t). Now, the following conclu-
sions can be drawn:

Lemma 2.1. (a) On a free subinterval If=[{1 , {2] the solution
x(t)= y1(t) ( first component of the vector y) is a cubic C 2-spline with
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respect to the given interpolation data. If g[t1], g[tn]<0, the natural
boundary conditions y"1(t1)= y"1(tn)=0 are satisfied.

(b) At each contact point { � I0 the solution x is arbitrarily smooth
(C�), at a contact point t j # I0 which coincides with an interpolation knot,
the solution x is at least C2, i.e., there do not exist nontrivial contact points.

(c) On a boundary subarc Ib=[{1 , {2] the solution x is an affine-
linear function and it is twice continuously differentiable at the junction
points {j , j=1, 2. If Ib contains no interpolation grid point, u$({&

1 )=u$({+
2 )

holds.

Proof. Property (a) follows from the differential equations (with
'(t)=0, cf. (2.10)) y$1(t)= y2(t), y"1(t)=u(t)=&*2(t), y1$$$(t)=*1(t), and
y(4)

1 (t)=0. At interpolation grid points t j # int(If) the second derivative
y"1=&*2 is continuous (:j=0 due to (2.10)), whereas y1$$$=*1 may have a
jump discontinuity.

A contact point { establishes a strict local minimum of y2 . Therefore, one
obtains the inequalties y"1({&)�0� y"1({+). On the other hand, from
Eq. (2.14) and +({)�0 it follows that y"1({+)=&*2({+)� &*2({&)=
y"1({&). Thus, the control u= y"1 is continuous at the contact point, and
+({)=u({)=0. The same derivation holds, if {=tj # I0 is a contact point:
Due to :j>0 one obtains :j=0, x"(tj)=0. Note that in this case the
natural boundary conditions are satisfied as well.

We remark that statement (b) agrees with a more general result of
Jacobson et al. [12] for optimal control problems with regular Hamilto-
nian and first order state constraints. See also Maurer and Gillessen [13].

The first statement of (c) follows from g[t]=x$min& y2(t)#0 on Ib . By
differentiation one obtains y"1(t)=u(t)=&*2(t)#0. Therefore, :j=0 holds
for all knots t j # int(Ib).

At the junction points {1 , {2 the minimum property of y$1 yields y"1({&
1 )

�0, y"1({+
2 )�0. Thus, if {1 , {2 � I0 , Eq. (2.14) results in 0= y"1({+

1 )=
&y"1({&

1 )++({1), which shows that u= y"1 is continuous at {1 . The same
holds with respect to the other junction point {2 . Also, the same derivation
remains true, if {1 # I0 or if {2 # I0 , because of :j�0. Therefore, x is twice
continuously differentiable at the junction points.

A further differentiation of u(t)=&*2(t)#0 reveals '(t)=*1(t)�0,
(t # Ib). As *1 is piecewise constant with jumps only at the interpolation
knots, it follows in case Ib & I0=< that

*1=const.�0, if t # [tj , {1[,

u$(t)=&*$2(t)={0, if t # [{1 , {2],

*1 , if t # ]{2 , tj+1].
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From this we find u$({&
1 )=u$({+

2 )�0, and, due to the maximality property
of the boundary subarc, even u$({&

1 )=u$({+
2 )>0. K

Note that the natural boundary conditions also hold if the t1 or tn are
endpoints of boundary subarcs.

It may be recalled that, according to the assumption (1.5), each bound-
ary subarc Ib contains at most one interpolation grid point. On the other
hand, due to the monotone behaviour of u just described, each interpola-
tion subinterval [tj , tj+1] contains at most one boundary subarc and
further between two boundary subarcs there are at least two knots of the
interpolation grid.

Now, we can summarize the previous results as follows.

Theorem 2.1. Let x be a solution of Problem 1.1, i.e., x is a minimizer
of the functional J subject to the interpolation and monotonicity constraints.
Then x has the following properties:

(a) x is a natural cubic C2 spline with respect to an augmented grid

a={1<{2< } } } <{N=b,

where the {'s consist of the given interpolation knots tj and possibly some new
knots (to be called additional knots in the sequel ), which are endpoints of
subintervals with x$(t)#x$min . The natural boundary conditions hold

x"(t1)=x"(tn)=0. (2.15)

(b) Between two neighboring interpolation knots tj , tj+1 there are at
most two additional knots. If there is precisely one additional knot { between
tj , tj+1 , then x$min&x$ vanishes either in [t j , {] or in [{, tj+1]. If there are
precisely two additional knots {1 , {2 between t j , tj+1 , then x$min&x$ vanishes
between these additional knots, and

x$$$({&
1 )=x$$$({+

2 )>0. (2.16)

Corollary 2.1. Analogous properties as given in Theorem 2.1 with the
exception of the natural boundary conditions (2.15) hold for the solution of
Problem 1.2. Also for Problem 1.3 analogous properties are valid.

3. LOCAL, MONOTONE CUBIC SPLINE INTERPOLATION

Theorem 2.1 gives a complete characterization of optimal monotone
cubic splines. For numerical purposes however, it is necessary to obtain
some information, or at least a good estimate, of the number and the
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relative position of the additional knots with respect to the original grid.
This information about the solution structure is not easy to obtain from the
above theorem.

Therefore, it is reasonable to consider the problem for one subinterval
and for boundary data of the type (1.5) taken from the unrestricted inter-
polating spline. We call this problem the local problem. It is much easier
than the general one, and one can solve it essentially analytically, i.e.,
in terms of few nonlinear equations which have polynomial form, thus
obtaining suitable initial estimates for the global problem.

In the case of a non-negative constraint this concept has been applied
successfully by Dauner and Reinsch [5] and independently by Fischer
et al. [7] for cubic spline interpolation and recently was extended to quin-
tic splines by Oberle and Opfer [16] where some new phenomena were
observed.

In the case of the monotonicity constraint (1.4) considered in this paper,
the local problem is more complicated due to the fact that a boundary sub-
arc may involve more than one subinterval of the original interpolation
grid. Further, the unrestricted spline does not necessarily produce slopes
x$(tj)>x$min . Therefore, it does not suffice to consider only one subinterval
for the local problem. However, according to the assumption (1.5), one
does not need to consider more than two subintervals of the original grid.
So, in the following we investigate the cases of one and two subintervals
separately.

For reasons of simplicity, we restrict ourself in the following to the
case x$min=0. This can be done without loss of generality by the simple
transformation x~ (t) :=x(t)&x$min } t.

3.1. Case of One Subinterval

We start with Problem 1.2 for the special case of one subinterval (n=2).

Problem 3.1. For given data t1 , t2 , x1 , x2 , b1 , b2 satisfying the assump-
tions

t1<t2 , x1<x2 , and b1 , b2>0,

a continuously differentiable and piecewise smooth function x is to be
determined, which minimizes the functional J subject to the constraints

x(ti)=xi , x$(ti)=bi (i=1, 2), x$(t)�0 (t1�t�t2).

Problem 3.1 has a unique solution. This is either the cubic Hermite
interpolant for the given interpolation data if it satisfies the monotonicity
constraint, or it is a cubic spline with two additional knots and one
(interior) boundary subarc. The details are given in the following theorem.
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Theorem 3.1. (a) The (unrestricted ) cubic Hermite interpolation poly-
nomial x0 violates the monotonicity constraint x$0(t)�0, if and only if the
following three inequalities are (simultaneously) satisfied,

(i) u :=2b1+b2&3x[tl , t2]>0,

(ii) v :=b1+2b2&3x[tl , t2]>0, (3.1)

(iii) u2>b1(u+v),

where x[t1 , t2] :=(x2&x1)�(t2&t1) denotes the first divided difference. If
one of the inequalities (3.1) is not satisfied, x0 is the solution of Problem 3.1.

(b) The conditions (3.1) are equivalent to the inequality

z :=b1+b2&3x[t1 , t2]>- b1b2 . (3.2)

(c) If the inequalities (3.1) are satisfied, the solution to Problem 3.1 is
a cubic C2-spline with two additional knots {l , {2 satisfying t1<{l<{2<t2 .
The interval [{1 , {2] is a boundary subarc of the monotonicity constraint.
The additional knots and the corresponding interpolation data are given by
the formulae

{1=t1+3
- b1

- b3
1 +- b3

2

(x2&x1),

{2=t2&3
- b2

- b3
1 +- b3

2

(x2&x1),

(3.3)

x({1)=x1+
1
3

b1({1&t1),

x({2)=x2+
1
3

b2({2&t2).

Proof. The unrestricted cubic Hermite interpolation polynomial x0 can
be written in the Taylor-form

x0(t)=x1+b1(t&t1)+c(t&t1)2+d(t&t1)3,

where c=(&2b1&b2+3x[t1 , t2])�(t2&t1) and d=(b1+b2&2x[t1 , t2])�
(t2&t1)2. Now, a simple calculation shows that condition (3.1)(i) is equiv-
alent to x"0(t1)<0, and that condition (3.1)(ii) is equivalent to x"0(t2)>0.
Both conditions are necessary and sufficient for x$ possessing a strict global
minimum at some point te # ]t l , t2[. Now, (3.1)(iii) is equivalent to
x$(te)<0. This proves part (a) of the theorem.
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The proof of part (b) is straightforward. We refer to Podewski et al.
[18].

If Eqs. (3.1) are satisfied, Theorem 2.1 shows that the solution of
Problem 3.1 is a cubic C2-spline x with two additional knots and precisely
one boundary subarc [{1 , {2]. Because x$min=0, this is characterized by the
conditions

x$ | [{1, {2]=0, x" | [{1, {2]=0, x$$$({&
1 )=x$$$({+

2 )>0. (3.4)

Therefore, by cutting off the boundary subarc, one obtains the transformed
spline

x~ (t) :={x(t),
x(t+{2&{1),

if t1�t�{1 ,
if {1�t�t~ 2 :=t2&{2+{1 ,

(3.5)

which is one cubic polynomial corresponding to the interpolation data

x~ (t1)=x1 , x~ $(t1)=b1 , x~ (t~ 2)=x2 , x~ $(t~ 2)=b2 .

Further, x~ fulfills the additional conditions x~ $({1)=x~ "({1)=0, x~ $$$({1)>0.
Thus, the function x~ has a representation of the form x~ (t)=a(t&{1)3+
x~ ({1), a>0. By substitution of the interpolation conditions and eliminating
the parameters a and x~ ({1), one obtains the following nonlinear system of
equations,

b2h2&b1h1=3(x2&x1),
(3.6)

b1h2
2&b2h2

1=0

for the unknowns h1 :=t1&{1<0 and h2 :=t~ 2&{1=t2&{2>0. Solving
these equations one obtains the unique solution given in Eq. (3.3).

Obviously {1>t1 and {2<t2 hold. To complete the proof, we have to
show that, under the assumption (3.1), {1<{2 also holds. Elementary
manipulation gives the length of the boundary subarc

{2&{1=(t2&t1) } \1&
3x[t1 , t2]

b1+b2&- b1b2
+ . (3.7)

Thus, {1<{2 is equivalent to the condition (3.2), which proves part (c) of
the Theorem. K

3.2. Case of Two Subintervals

Now, we consider Problem 1.2 for n=3. It turns out that one can reduce
this problem to one convex polynomial equation of fourth degree, which
can easily be solved, say by Newton's method.

191OPTIMAL MONOTONE CUBIC SPLINE



Problem 3.2. For given data (tj , xj), j=1, 2, 3, and values b1 , b3 satis-
fying the assumptions

t1<t2<t3 , x1<x2<x3 , and b1 , b3>0,

a continuously differentiable and piecewise smooth function x has to be
determined, which minimizes the functional J subject to the interpolation
conditions

x(ti)=xi (i=1, 2, 3), x$(t i)=bi (i=1, 3), (3.8)

and the monotonicity constraint

x$(t)�0 (t l�t�t3). (3.9)

First, the unrestricted cubic spline x0 corresponding to (3.8) is considered
and a criterion is derived, which tells us whether x0 satisfies the constraint
(3.9) or not.

Theorem 3.2. Let x0 be the unrestricted cubic spline satisfying (3.8). We
use the abbreviations hj :=tj+1&t j , x[t j , t j+1] :=(x j+l&x j)�hj ( j=1, 2),
and

$1 :=3x[t1 , t2]&b1 , $2 :=3x[t2 , t3]&b3 . (3.10)

The spline x0 violates the constraint (3.9) if and only if one of the following
two conditions is satisfied

(I) b0
2<0,

(II) b0
2>0, and either (3.11)

z1 :=b0
2&$1>- b1 b0

2 , or z2 :=b0
2&$2>- b0

2b3 ,

where

b0
2 :=x$0(t2)=

$1h2+$2 h1

2(h1+h2)
(3.12)

denotes the derivative of x0 at the middle knot t2 .
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Proof. The unrestricted cubic spline x0 satisfying (3.9) may have the
representation

x0(t)=x j+b j (t&tj)+c j (t&t j)
2+d j (t&t j)

3, tj<t<t j+1 , j=1, 2,

where cj=(&2bj&bj+1+3x[tj , tj+1])�hj , dj=(bj+bj+1&2x[tj , tj+1])�h2
j .

In these formulae b2=b0
2 can be determined by using the continuity of x"0

at t2 . A simple calculation reveals (3.12).
Obviously, x0 violates the monotonicity constraint if x$0(t2)=: b0

2<0, i.e.,
(3.11)(I) holds. If b0

2=0 holds, the constraint is violated if and only if
x"0(t2)=2$2�h2 {0. This corresponds to (3.11)(II).

In the case b0
2>0, one can apply Theorem 3.1 to each subinterval

[t1 , t2] and [t2 , t3] which proves the condition (3.11) (II). Note that in
this case the constraint (3.9) is violated in at most one subinterval
mentioned. K

In the following theorem we classify the structure of the optimal spline
with respect to its dependence on the parameters $1 , $2 , cf. (3.10). For
reasons of conciseness we omit the technical proof of this theorem, which
in principle, however, is similar to the proof of Theorem 3.1. The details
may be found in Podewski et al. [18].

Theorem 3.3. We keep the notions introduced in Theorem 3.2 and we
assume that the unrestricted spline violates the monotonicity constraint, i.e.,
the condition (3.11) holds.

(a) In the case $1�0, $2�0, and $1+$2 {0, the solution x of Problem
3.2 is a C2-spline with one boundary subarc [{1 , {2]. This boundary subarc
includes the middle interpolation knot t2 . Explicitly, one obtains

{1=t2+$1 h1 �b1 , {2=t2&$2 h2 �b3 , x({1)=x({2)=x2 . (3.13)

(b) In the case $1>0 and $1>$2 , the solution x of Problem 3.2 is a
C2-spline with one boundary subarc [{1 , {2] which is located fully in the
right subinterval, i.e., t2<{1<{2<t3 . More precisely, if u* denotes the
(uniquely determined ) positive root of the polynomial (r stands for right)

Fr(u) :=
h1

3
u4+2(x3&x2) u2+

h1

3
- b3

3 u&$1(x3&x2), (3.14)

then the derivative at the middle interpolation knot is given by b2=x$(t2)=
(u*)2, and the additional knots and the corresponding interpolation data can
be determined as in Theorem 3.1, namely
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{1=t2+3
- b2

- b3
2 +- b3

3

(x3&x2),

{2=t3&3
- b3

- b3
2 +- b3

3

(x3&x2),

(3.15)

x({1)=x2+
1
3

b2({1&t2),

x({2)=x3+
1
3

b3({2&t3).

(c) The analogous property holds in the case $2>0, and $2>$1 . Here,
the solution has one boundary subarc [{1 , {2] which is located in the left
open subinterval ]t1 , t2[. The derivative b2=x$(t2) is given as the square of
the uniquely determined positive root of the polynomial (l stands for left)

Fl (u) :=
h2

3
u4+2(x2&x1) u2+

h2

3
- b3

1 u&$2(x2&x1). (3.16)

The additional knots {1 , {2 are given as in Theorem 3.1 by the formulae (3.3).

Example 3.1. We choose the interpolation data

(t1 , x1)=(&3, &1), (t2 , x2)=(&1, 0), (t3 , x3)=(2, 3); b1=2, b3=7.

Figure 3.1 shows the unrestricted and the optimal monotone spline of this
example obtained by Theorem 3.3(a). The derivatives of the splines are
given in the figure on the right. The optimal spline contains one boundary
subarc with an interior interpolation knot. The additional knots, entry-
and exit-points of the boundary subarc are found to be

{1=&1.5000000, {2=0.71428571.

Example 3.2. We choose the interpolation data

(t1 , x1)=(&3, &1), (t2 , x2)=(&1, 0), (t3 , x3)=(2, 3);

b1=0.3, b3=4.5.

194 FREDENHAGEN, OBERLE, AND OPFER



FIG. 3.1. Example 3.1; unrestricted and monotone splines and their derivatives.

Figure 3.2 shows the unrestricted spline as well as the solution obtained by
Theorem 3.3(b) and its derivatives (figure on the right). The optimal
monotone spline contains one boundary subarc situated in the right subin-
terval [t2 , t3].

The numerical figures for entry and exit point are given by

{1=&0.61915382, {2=0.014005307;

the corresponding interpolation values are found to be x({1)=x({2)=
0.021007961.

Note that by the Theorem 3.3 we have obtained a complete description
of the solution of Problem 3.2. First, by the condition (3.12) of Theorem
3.2, one can find out whether the unrestricted spline already solves the
problem. If this is not the case, then exactly one of the three cases con-
sidered in Theorem 3.3 is valid and the corresponding restricted spline can
be evaluated either directly (Theorem 3.3(a)) or by the solution of a simple
polynomial equation (Theorem 3.3(b),(c)).

FIG. 3.2. Example 3.2; unrestricted and monotone splines and their derivatives.
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4. A NUMERICAL ALGORITHM AND EXAMPLES

In this section we describe an algorithm for the numerical computation
of monotone cubic splines. The algorithm is based on the necessary condi-
tions developed in Section 2.

It is obvious that the method can be applied to more general obstacles
of the form

x$min�x$(t)�x$max , (4.1)

even if x$min , x$max are replaced by step functions where the jumps may occur
at the grid points of the mesh (1.3). So, for example, a switching of the con-
straint from monotone increasing to monotone decreasing or vice versa,
can be treated as well (so-called comonotone cases). For simplicity we
restrict the description of the algorithm to the monotone case.

The basic idea of the algorithm is given by cutting off the boundary sub-
arcs as it is described in Eq. (3.5). Here, for each boundary subarc [{1 , {2]
the spline for t�{1 and all interpolation knots tj>{2 are shifted by the
length of the boundary subarc l :={2&{1 to the left. Thus, one obtains an
unrestricted C2-spline x~ with respect to the modified grid for which the
derivative x~ $ has a minimum at te={1 with x~ $(te)=0. Thus, the spline x~
can be computed by any standard algorithm for cubic spline interpolation,
see, for example, Bulirsch and Rutishauser [3].

For one boundary subarc situated in the subinterval [tk , tk+1],
k # [1, ..., n&1], the transformation is given by

x~ (t) :={x(t),
x(t+{2&{1),

if t1�t�{1 ,
if {1�t�t~ n ,

(4.2)

t~ j :={t j ,
t j&({2&{1),

if j=1, ..., k,
if j=k+1, ..., n.

(4.3)

Note that for general values of x$min , the ordinates of the interpolation data
have to be transformed by x~ j=xj&x$min } l, j>k, too, where l={2&{1

denotes the length of the boundary subarc.
For the numerical computation of the restricted spline one can proceed

as follows:
For an estimate of the length l of the boundary subarc one determines

the shifted grid (t~ j), (x~ j) according to the above formulae. The correspond-
ing unrestricted spline is denoted by x~ (t, l). Now, a point te(l) # [t~ k , t~ k+1]
has to be determined, where the derivative x~ $(t, l) takes its minimum value
with respect to this subinterval.
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In general, te(l) is situated in the interior of the interpolation interval,
but sometimes it may also be situated at the endpoints t~ k , t~ k+1 . This is the
case, if the boundary subarc contains an interior interpolation knot.

The parameter l has eventually to be determined such that

8(l) :=x~ $(te(l), l)=0. (4.4)

This can be done by means of Newton's method using the given estimate
for l as the starting value.

The same method works, if the restricted spline contains several bound-
ary subarcs. In this case one has to perform the transformation (4.2), (4.3)
for each boundary subarc, l becomes a vector with length equal to the
number of boundary subarcs, say m, and 8 becomes a vector-valued
function of the form

8(l) :=\
x~ $(t (1)

e (l), l)
b

x~ $(t (m)
e (l), l)+=0, (4.5)

where t (k)
e denotes the minimum of x~ on the subinterval which contains the

kth boundary subarc. The Jacobian of 8 is computed by numerical dif-
ferentiation.

After numerical convergence of the method, the computed spline x~ has
to be retransformed in order to obtain the restricted spline for the original
problem. To this end, the additional knots are computed according to

{ (k)
1 =t (k)

e (l), { (k)
2 ={ (k)

1 +lk . (4.6)

We note that the numerical behaviour of the method depends strongly on
a suitable choice of the initial estimates. We have found that favourable
initial estimations can be gained by the local monotone spline described in
Section 3. The derivatives necessary for the computation of the local spline
are obtained by the corresponding unrestricted spline which is determined
a priori. Now, in each subinterval [ti , ti+1] with x$(tj)>0, j=i, i+1,
Theorem 3.1 is used to check whether the unrestricted spline satisfies the
monotonicity constraint or not. In the latter case, Theorem 3.1 gives an
explicit formula for the additional knots of the (locally) constrained spline.
These are used as initial data for the computation of the globally con-
strained spline. The same can be done if one of the derivatives, say x$(ti+1),
is nonpositive. In this case we assume that x$(tj)>0, j=i, i+2, and we
apply Theorem 3.3 in order to compute the additional knots (in [ti , ti+2])
for the locally constrained spline.
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In general the number of required Newton steps to solve the problem is
reduced considerably by this choice of the initial data. Further, even for
stringent restrictions, the problem could be solved without applying a
homotopy or continuation method. We demonstrate the behaviour of the
algorithm by two examples from the literature.

Example 4.1 (Fritsch and Carlson [8]). We choose n=9 and
interpolation data which are taken from a radio-chemical problem, see
Table 4.1.

The data are monotone; however, the unrestricted spline is not. The
optimal monotone spline has three boundary subarcs which are situated in
the first, the sixth, and in the last subinterval. The entry-point of the first
and the exit-point of the last boundary subarc coincides with an interpola-
tion knot.

For this example one observes that the solution structure depends
strongly on the restrictions. So, for mild restrictions x$min<0.118, the
solution has only one boundary subarc situated in the subinterval [10, 12].

For more stringent constraints &0.118<x$min<&0.00025 a second (very
small) boundary subarc in the first interval appears, which for reasons of
clarity is not indicated in Fig. 4.1. For constraints x$min> &0.00025 a third
boundary subarc exists in the last subinterval [15, 20]. For the monotone
case the boundary subarcs are given in Table 4.2.

Example 4.2. We choose n=8 and interpolation data similar to an
example of Spa� th [20, p. 102, Fig. 4.11], see Table 4.3.

The function values are monotone increasing in the interval [0, 10] and
monotone decreasing in [10, 20]. Therefore, we determine an interpolating
spline which preserves these properties, i.e., we use the restrictions x$(t)�0
on [0, 10] and x$(t)�0 on the other part [10, 20]. The algorithm solves
this problem within a few Newton-steps. In Fig. 4.2 the unrestricted and
the restricted splines are shown as well as their first derivatives (the figure

TABLE 4.1

Given Interpolation Data

tj 7.99 8.09 8.19 8.7 9.2 10

xj 0 2.76429E-5 4.37498E-2 0.169183 0.469428 0.943740

tj 12 15 20

xj 0.998636 0.999919 0.999994
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FIG. 4.1. Example 4.1; unrestricted and monotone splines and their derivatives.

TABLE 4.2

Junction Points of Example 4.1

{j 7.9900000 8.0865338 10.549942 11.999650 15.921658 20.000000

x({j) 0.0000000 0.0000000 0.9986360 0.9986360 0.9999940 0.9999940

TABLE 4.3

Interpolation Data

tj 0 4 6 10 12 14 18 20

xj 3 4 9 10 9 5 4 3

FIG. 4.2. Example 4.2; unrestricted and monotone splines and their derivatives.
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TABLE 4.4

Junction Points of Example 4.2

Tj 0.0000000 2.3229670 7.6770330 10.004756 15.948384 17.354404

x({j) 3.0000000 3.0000000 10.000000 10.000000 4.0351027 4.0351027

on the right). The solution has three boundary subarcs. The junction points
are given in Table 4.4.
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